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• CO  fracturing is more effective in reservoir
stimulation than water

• Multiscale mechanism of CO  fracturing was
experimentally established

• 4- to 20-fold increase in tight oil production was
achieved by CO  fracturing

Context & Scale
As compared with conventional gas and oil
reservoirs, low porosity and low permeability are the
major obstacles for the recovery of unconventional
resources. Therefore, reservoir fracturing by water
was generally employed to stimulate production.
However, alternative fracturing fluids are highly
desired because of water shortage and pollution
issues; therefore, dry CO  fracturing was proposed.
Our multiscale investigation, from microscopic study
to field tests, demonstrated that under reservoir
conditions, injection pressures can be delivered into
a larger reservoir matrix by CO , thus effectively
lowering the fracturing pressure. More importantly,
complex fracture networks can be generated
together with greater stimulated reservoir volume.
Eventually, enhanced production of unconventional
resources can be achieved.
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Summary
Water fracturing is widely employed as a reservoir-
stimulating technology for the recovery of
unconventional oil and gas. However, the process
suffers from massive water consumption and
environmental concerns. Therefore, alternative
fracturing fluids are desired. In recent years,
fracturing with CO  was proposed to embrace
multiple benefits, including carbon storage,
enhanced recovery, etc. Herein, based on specially
designed facilities and new analytical methodologies,
we present multiscale and quantitative investigations
on the fracturing mechanism and behavior of CO
and water. It was demonstrated that because of the
high leak-off of CO , shear fractures can be readily
induced, which facilitated the formation of tensile and
mixed fractures, leading to effective fracturing,
complex networks, and greater stimulated reservoir
volume. Finally, a 4- to 20- fold increase in tight oil
production could be achieved by CO  fracturing in
field tests with five wells.

Graphical Abstract
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Introduction
Unconventional oil/gas is playing a more and more
decisive role in the global energy market. In 2015,
more than half of gas and oil production in North
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American was contributed from shale and tight
reservoirs.  The global abundance of unconventional
oil/gas may shift the energy consumption structure
from coal to less-carbon-intensive resources, and as
concluded by several life-cycle assessments, such
transformation opens up an alternative approach for
decarbonization and reduction of greenhouse gas
emission.    However, most of the
unconventional oil/gas reservoirs are characterized
by low porosity and low permeability, requiring
reservoir stimulation technologies such as formation
reconstruction to enable commercial production.
Currently, water fracturing has been well established
and deployed, particularly in the North American
shale gas recovery. However, a huge amount of
water is needed in such a process, which has
already become an issue in Texas, North Dakota,
Kansas, etc.  There are other concerns related to
water fracturing. For example, swelling of clay
minerals by water can significantly damage diffusion
channels, greatly decrease the impact of water
fracturing, and thus lead to poor production.  
Meanwhile, during the early stage of production,
most of the used water and some of the underground
water usually flow back to the surface, which is
contaminated by hazardous substances from the
fracturing additives and/or the reservoir. All of the
above drawbacks made water fracturing a cost-
ineffective and environmentally risky process.   

 

Non-aqueous fracturing could be a potential solution
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to circumvent the above issues.   There are
several technologies proposed already, such as high-
energy gas fracturing (by a rapid burning of
explosives or propellant),  foam fracturing (using a
gas-liquid two-phase flow),  and even liquid
nitrogen gasification fracturing.   Among the
proposed non-aqueous fracturing fluids, CO  is of
particular interests.    This is because (1) CO
fracturing provided a potential solution to reservoirs
located at arid areas by avoiding water usage ; (2)
CO  fracturing may have lower breakdown pressure
due to more effective activation of the pre-existing
flaws     ; (3) reservoir damage by
aqueous fluids in water-sensitive formations, e.g.,
capillary blocking, can be avoided ; (4) oil/gas
recovery can be enhanced by multiple mechanisms
such as increasing miscibility of hydrocarbons,
lowering viscosity of heavy oil, displacement of gas
adsorbed on organic matters, and improving
diffusivity   ; and (5) part of the used CO  can
be simultaneously stored in the formation after
fracturing, enabling green and low-carbon production
of unconventional resources.   

CO  fracturing can also be considered as an
emerging technology in the portfolio of carbon
capture, utilization, and storage (CCUS), similar to
the enhanced oil recovery (EOR) and the enhanced
coal-bed methane recovery (ECBM). As CCUS was
predicted to be indispensable to achieve the carbon
reduction target set by the Paris Accord,  related
technologies are developing rapidly, making CO
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fracturing cheaper and more feasible. For example,
capturing CO  from industrial waste gas on a million-
ton-per-year scale was recently demonstrated by the
Boundary Dam CCS project and the Petro Nova
CCS project.  This makes large-scale CO
fracturing a promising possibility for CO  utilization.
On the other hand, as a downstream sector of
carbon capture, CO  fracturing has promising
potential to neutralize the cost of CO  capture.

To date, only very limited investigations on CO
fracturing were carried out. Researchers from Los
Alamos National Laboratory performed systematic
studies on CO  fracturing, including comprehensive
analysis on fluid transport and influence on
prolonged production. They predicted that CO
fracturing may be able to increase the cumulative
production of shale gas by 80% in a 5-year-period.
Consequently, the combinative benefits of CO
fracturing, i.e., enhancing production, CO  storage,
less water dependent, etc., may considerably
influence the industry of unconventional resource
exploration.   Ishida and co-workers found that
comparing with water and liquid CO , supercritical
CO  showed lower breakdown pressure but
generated fractures that extended more three-
dimensionally. They attributed these benefits to the
low viscosity of supercritical CO ,  which was
supported by Deng and Yin’s analysis based on
linear elastic fracture mechanics.  A combined
study of tri-axial experiments and computed
tomography (CT)-scanning by Zhang and Lu et al.
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also showed similar phenomena that, as compared
with water fracturing, more than 50% decrease of
initiation pressure and formation of more irregular
cracks were achieved by CO  fracturing.

Although the effectiveness of CO  fracturing over
water is now recognized, lab experiments and field
tests did not deliver positive results consistently.  
Fundamental understandings of CO  fracturing are
still in their early infancy, and related publications are
rare. In-depth knowledge from the perspective of
how the unique properties of CO  can affect
fracturing performance is still lacking. More
importantly, the intrinsic mechanism and behavior of
CO  fracturing across different length scales, as well
as its comparison with water fracturing, remain the
largest hindrance for practical application.

In order to fill the above blank, herein, we report a
multiscale study on the comparison of water and
CO  fracturing. To this end, a tri-axial fracturing rig
coupled with in situ acoustic monitoring was specially
designed, which tracks the dynamic fracturing
process with unparallel time and space resolution.
As such, the obtained data allowed us to perform
simplified moment tensor analysis (sMTA) to
quantitatively determine the fracturing mechanism.
Furthermore, formation of fracture networks by CO
and water was investigated and simulated to study
the difference in stimulated reservoir volume. It was
found that CO  fracturing is highly effective in
lowering breakthrough pressure while enhancing the
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complexity of the fracture network. Such excellent
behavior can be attributed to high leak-off that is
closely related to the low viscosity and high mobility
of CO . The laboratory investigation was
complemented by data from field tests at Jilin oil
field, where the tight oil production was not altered
by water fracturing but could be enhanced
significantly upon CO  fracturing.

Results and Discussion
Micro-scale: Breakthrough Pressure during
CO  and Water Fracturing
Our first attempt is to investigate the difference in
using CO  and water as fracturing fluids at the
microscopic level. To this end, shale outcrops from
the Longmaxi formation (Chongqing, SW China)
were collected and processed into cylindrical
samples. During the procedure, a surface layer of at
least 20 cm was removed first to minimize the effect
of weathering. Measurements were conducted to
verify the mechanical properties of the collected
outcrops, and core samples from the same formation
are similar (Table S1). After fitting a simulating well to
the samples, they were submitted to fracturing
experiments in a tri-axial chamber at reservoir
conditions. During the process, the initiation and
propagation of fractures were monitored by in situ
detection of acoustic emission (AE) signals. At the
same time, injection pressure (IP) and flow rate (FR)
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of the used fracturing fluid were recorded. Detailed
experimental methodologies were described in
Experimental Procedures and Supplemental
Information 1 (Figures S1–S4).

First, a water fracturing experiment was performed
under a confining pressure of 20 MPa and an axial
load of 2 MPa. A programmed IP ramping of
500 kPa/min was used during the entire process.
Under these conditions, however, the sample stayed
intact even after applying an IP of 37.0 MPa
(Figure 1A). Correspondingly, the AE results showed
densely concentrated events at the close vicinity of
the borehole (Figure 1B). CO  fracturing under the
same condition was then carried out. As showed in
Figure 1C, a high FR was observed at the initial
injection stage because of the higher compressibility
of CO . At ca. 2,600 s, instant decrease of IP
accompanied by an increase of CO  FR was
observable probably because of the propagation of
fractures (blue circle). Such a high FR indicated that
a larger volume of fluid was needed for CO
fracturing than that of water. Breakthrough was
observed at ca. 2,800 s with an IP value of 28.0
MPa, 25.1% lower than the maximum IP observed in
Figure 1A for water fracturing; note that breakthrough
was not achieved in the latter case. More
interestingly, we noted from the AE detection that
cracks generated by CO  were more widely
distributed even at a lower IP (Figure 1D), indicating
a larger volume of the shale matrix can be
pressurized by CO . As a control experiment, water
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fracturing was carried out again by slightly increase
the axial load to 5 MPa for proper sealing of the well
(Figure 1E). It was found that upon injection of water
(1.2 mL/min), IP built up almost linearly after an initial
stage, and then suddenly decreased from 36.8 to
31.0 MPa (820 s), indicating accelerated formation of
fractures. During this experiment, concentrated
propagation of fractures was observed from the AE
detection (Figure 1F), which eventually led to
breakthrough of the sample at 38.6 MPa. This is to
say that the breakthrough pressure for water
fracturing is ca. 40% higher than that of CO
fracturing at similar conditions (Figure 1C). In
addition, we found that by decreasing the pressure
ramping rate to 250 kPa/min, the breakthrough
pressure of CO  fracturing could be further lowered
to 21.7 MPa, while the stimulated volume was not
sacrificed (Figures 1G and 1H).

Figure thumbnail gr1

Figure 1 Water and CO  Fracturing of Cylindrical Shale

Samples

* Show full caption

(A and B) IP, FR, and AE accumulation (A) and fracture location
(B) during water fracturing (confining pressure, 20 MPa; axial
load, 2 MPa; pressure ramping, 500 kPa/min).

(C and D) IP, FR, and AE accumulation (C) and fracture location
(D) during CO  fracturing (confining pressure, 20 MPa; axial
load, 2 MPa; pressure ramping, 500 kPa/min).
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(E and F) IP, FR, and AE accumulation (E) and fracture location
(F) during water fracturing (confining pressure, 20 MPa; axial
load, 5 MPa; flow rate, 1.2 mL/min).

(G and H) IP, FR, and AE accumulation (G) and fracture location
(H) during CO  fracturing (confining pressure, 20 MPa; axial
load, 2 MPa; pressure ramping, 250 kPa/min).

View Large Image | Figure Viewer | Download Hi-res image
| Download (PPT)

Fracturing mechanism was further studied by
submitting the AE results to sMTA as the method
determines the nature of fractures quantitatively
rather than the qualitative visual observation
(Supplemental Information 2; Figures S5 and S6).

 The results showed in Figure 2A indicated that, for
water fracturing, only those fractures located at the
borehole showed a diversified propagation direction.
However, multi-directional development of fractures
was observable at different locations of the CO
fractured sample (Figure 2B), indicating the potential
to generate more complex fracture networks (vide
infra). Very interestingly, we found that for CO
fracturing, over 85% of the analyzed fractures belong
to shear type, while at least 30% of the fractures are
contributed by tensile and mixed type for water
fracturing (Figures 2C and 2D; Supplemental
Information 3; Figures S7–S9). These results are in
good agreement with those from Ishida et al., who
reported that more shear fractures were generated
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by using fluids with lower viscosity.  According to
Šílený et al. and Cornet et al., pressure delivered by
geofluids in natural porosity of a formation can
substantially influence the fracturing behavior. With
poor mobility, simple tensile fractures are more likely
to form perpendicular to the minimum principal stress
direction. In contrast, if the pores can be properly
pressurized, a slip of the pre-existing natural
fractures can be induced and thus trigger shear
cracks.  

Figure thumbnail gr2

Figure 2 Fracturing Mechanism Analysis

* Show full caption

(A and B) Position resolved sMTA during (A) water and (B) CO
fracturing; filtered AE events for sMTA were indicated by circular
plates where the (1) position of the events was indicated by the
center of the circular plates; (2) color of the plates suggested
different modes of fracturing (red-shear crack, blue-tensile crack,
and green- mixed- mode); (3) arrows on the plates revealed the
motion direction of cracks, and plane of the plates represented
the crack surfaces (perpendicular to the crack normal vectors);
and (4) diameters of the plates were proportional to the source
amplitude of the corresponding AE events.

(C and D) Time resolved sMTA of water (C) and CO  (D)
fracturing; color indicates fractures with different mechanisms;
number in parentheses shows percentage of each mechanism.

View Large Image | Figure Viewer | Download Hi-res image
| Download (PPT)
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Mesoscale: Fracture Networks Generated
by Water and CO  Fracturing
During the fracturing of the cylindrical samples,
breakthrough achieved by CO  made it possible to
quantitatively evaluate the roughness of the fractured
surface with high resolution by using a Zygo
NewView 8300 interferometer. Several scanning
locations with an area of 3,000 × 3,000 μm along the
fracture path (determined by in situ AE detection)
were selected to minimize any subjective factors.
Among the analyzed areas, height differences as
large as ca. 260 μm were obtained (Supplemental
Information 4; Figures S10 and S11; Table S2). It
should be noted that the surface complexity obtained
in our study is considerably higher than that reported
by Li and Feng et al.,  probably because of different
experimental conditions and intrinsic properties of
the used samples.

Nevertheless, results showed in Figure 1 are less
favorable in reflecting the propagation of fractures
because of the small size of the used samples. In
this regard, larger samples (300 × 300 × 300 mm)
were thus collected and fractured in a tri-axial
system (Supplemental Information 5; Figures S12
and S13; Table S3). Similar to the aforementioned
results in Figure 1, CO  fracturing showed lower
breakthrough pressures than that of water. The post-
fractured samples were characterized by 3D
scanning, and the reconstructed breakthrough
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surfaces are shown in Figure 3 (see Videos S1 and
S2 for network demonstrations induced by CO  and
water fracturing, respectively). Clearly, readily
variation of the fracture direction could be observed
in CO  fracturing, resulting in a more effective
connection of natural fractures and thus formation of
multiple and non-planar fracture networks
(Figure 3A). On the other hand, fractures generated
by water terminated easily when encountering
bedding planes, any changing of propagation
direction from one bedding plane was quenched
quickly by merging into another bedding plane,
leading to simple bi-wing fractures (Figure 3B).

Figure thumbnail gr3

Figure 3 Reconstructed Fracturing Surface

* Show full caption

(A) CO  fracturing.

(B) Water fracturing.

(C) Calculation of SA .

View Large Image | Figure Viewer | Download Hi-res image
| Download (PPT)
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Video S1. Network Demonstrations Induced by CO2
Fracturing

Video S2. Network Demonstrations Induced by
Water Fracturing

Based on the digitalization of the fractured samples,
the fracturing-induced breakthrough surface areas
(SA ) can be calculated (Figure 3C). Given perfect
bi-wing splitting, an SA  value of 1,800 cm  could
be generated. Taking this value as a baseline,
SA  of water fracturing increased by only
7.4%, achieving 1,934 cm . Because the formation
of more complex fracturing network by CO
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fracturing, SA  reached a promising value of
3,518 cm , corresponding to 95.4% and 81.9%
increasing as compared to perfect bi-wing splitting
and water fracturing, respectively. These results
quantitatively evidenced that higher stimulated
reservoir volume (SRV) can be achieved by CO ,
which would translate to more effective fracturing
and enhanced oil/gas production due to larger
drainage areas. In repeated experiments, the
effectiveness of CO  fracturing was proved to be
universal at different operational conditions and
underground environments (Supplemental
Information 5; Table S4; and Figures S14–S18). A
general trend from these results showed that a larger
in situ stress difference favors the formation of more
complex networks.

Macro-scale: Enhancing Production of
Tight Oil by CO  Fracturing
In the above laboratory experiments, outcrops were
used because the processing of core shale samples
with the appropriate size and avoiding its rapid
weathering is extremely difficult. Although special
cautions were taken during sample collection, and
the geomechanical parameters of the outcrops were
comparable to core samples from the same
formation (Table S1 in Supplemental Information 1),
the gap between laboratory observations and
practical operations cannot be ruled out. To address
this issue, field tests of dry CO  fracturing were
carried out in the tight oil reservoir at Jilin oil field, NE
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China. The formation possesses low porosity (avg.
11.97%) and low permeance (0.63 mD) together with
a low concentration of acid-sensitive minerals (e.g.
chlorite), making it highly suitable for CO  fracturing.
It should be mentioned that water fracturing in these
reservoirs induced very limited SRV probably
because of water sensitivity (Supplemental
Information 6; Figure S19), and thus the
enhancement on production from water fracturing is
negligible.

For the CO  fracturing operation, a total of five wells
were drilled and tested, and a typical operational
curve and general process parameters are shown in
Figure 4A and Table S5 (Supplemental Information
6). Each operation included five steps, namely leak
testing, fracturing, proppant transporting, well
closing, and production. It should be mentioned that
pure CO  was employed during fracturing to achieve
effective stimulation, while in the proppant
transporting stage, CO  thickened with a custom-
made tri-block co-polymer were used to enhance
proppant carrying. Such a combination can also
lower the cost and environmental footprint of the
process. The used CO  during fracturing and
proppant transporting stage accounts for ca. 45%
and 55% of the total injected CO , respectively.

Figure thumbnail gr4

Figure 4 Dry CO  Fracturing at Jilin Oil Field

* Show full caption
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(A) Variation of operational parameters during the fracturing
process of well E.

(B) Oil production before and after CO  fracturing of well A–E.

(C and D) Top (C) and side (D) views of micro-seismic monitoring
during the fracturing process of well E (injection point: 0 [East]), 0
[North], and 1590 [Depth]). Red: injection of pad fluid; Green:
injection of proppant; Blue: injection of displacement fluid.

View Large Image | Figure Viewer | Download Hi-res image
| Download (PPT)

To our delight, oil production increased by ca. 4- to
20-fold after the entire CO  fracturing process
(Figure 4B). Note that although the previous water
fracturing was carried out in different wells, their
influence may not be negligible. This is because
during the subsequent operation with CO , the
network complexity might be enhanced because of
the presence of simple but far-reaching fractures
generated by previous water fracturing.
Nevertheless, as water fracturing resulted in little
enhancement of production, the results showed in
Figure 4B still demonstrated the great promise of
CO  fracturing or, more strictly, water + CO
fracturing. We also carried out micro-seismic
monitoring during the fracturing process. It was
found that the SRV induced by CO  fracturing is ca.
2.5 times larger than that of water (Figures 4C and
4D), which is in accordance with the laboratory
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experiments. These real-world results revealed that
as compared to water fracturing, CO  fracturing is an
important and greener alternative, particularly for
reservoirs with water-sensitive formations, located at
arid areas, or other conditions that making water
fracturing less applicable.

Mechanism: The Effectiveness of CO
Fracturing
The effectiveness of CO  fracturing over that of
water was also reported by others, and such results
were related to the viscosity and interfacial tension of
the fluids (Supplemental Information 7;
Figure S20).       However,
understandings on the in-depth mechanism were
rarely reported, and direct and in situ evidence
during the fracturing process is particularly lacking.
During the preparation of this paper, fracture
propagation in CO  and water fracturing was
comprehensively simulated and reported by Li and
Zhang.  In their work, complexity of fracture
networks generated by supercritical CO  is
significantly higher than that of water.
Correspondingly, the artificial fracture area induced
by supercritical CO  reached 1.573 × 10  m ,
roughly an order of magnitude higher than that
induced by water (2.469 × 10  m ) under the same
pressure conditions. More interestingly, shear
fracture accounted for more than 90% by CO
fracturing, while the contribution from shear and
tensile fracturing is approximately the same for water
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fracturing.

Our experimental results echo perfectly to these
theoretical predictions. Based on our AE results
showed in Figure 1, it is very obvious that CO  has a
significantly higher mobility within the shale matrix
probably because of higher leak-off. This may be
related to the low viscosity and low interfacial tension
of CO . Similar to those discussed by Li and Zhang
from a simulation perspective,  we attribute the
effectiveness of CO  fracturing (lower breakthrough
pressure, complex fracture network, larger SRV, etc.)
to its higher leak-off. First, breakthrough is dictated
by the volume increasing rate of a fracture (v ) and
the fluid fed into that fracture (v ); namely,
breakthrough occurs when v  > v . Since higher
leak-off improves the delivery of IP into the shale
matrix, an in situ stress regime can be readily
altered, leading to higher v . At the same time,
higher leak-off also slows the accumulation of fluid in
a local fracture and thus lowers the v . Secondly,
high leak-off allows filling of more beddings and/or
natural cracks, and shear fractures could be more
easily generated at these locations because of their
lower cohesion strength. Accumulation of these
shear events possibly lowered the pressure barrier
for the formation of tensile and mixed fractures. This
behavior could be verified by the accumulation of AE
events during the experiments. As can be seen in
water fracturing (Figures 1A and 1E), the generation
of AE events accelerated only after substantially high
IP (ca. 15 MPa). In contrast, a considerable amount
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of AE events already generated at IP below 10 MPa
during CO  fracturing (Figures 1C and 1G).
Collectively, a combination of the above two factors
eventually renders CO  fracturing with lower
breakthrough pressures, more complex fracture
networks, and larger SRV.

An issue that should be addressed is the interaction
between natural and artificial fractures, which may
become increasingly pivotal at the field scale. From
Li and Zhang’s simulation, discrepancies in viscosity
and compressibility of CO  and water could lead to
very different fracturing effectiveness with the
presence of natural fractures.  In order to further
verify such behavior, similar modeling was carried
out under conditions closer to the Longmaxi
formation. From Figure 5, it is clearly observable that
CO  showed a greater tendency to penetrate natural
cracks, leading to propagation of fractures within the
rock matrix. On the other hand, cracks induced by
water injection were favorably combined with natural
fractures. These results are in good accordance with
the experimentally observed formation of more
complex networks and larger SRV by CO .

Figure thumbnail gr5

Figure 5 Fracturing Simulated by ABAQUS

* Show full caption

Schematic fractures were magnified by 50 times for clarity; the
red circles indicate injection points.
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(A–C) Fracture network during water fracturing with injection time
of 5.0 s (A), 11.6 s (B), and 20.0 s (C).

(D–F) Fracture network during CO  fracturing with injection time
of 5.2 s (D), 11.5 s (E), and 20.0 s (F).

View Large Image | Figure Viewer | Download Hi-res image
| Download (PPT)

Apart from the fluid itself, practical fracturing
operation can also be influenced by a range of
factors, which may affect the effectiveness of CO
and water fracturing. For example, it was reported
that permeability of rock matrix can be altered
substantially because of factors such as fracturing-
induced roughness, adsorption and desorption of
guests, and so on, and thus, the overall fracturing
outcome in terms of production may vary.  
Therefore, further investigations are needed to
identify the feasibility boundary of CO  fracturing
technology, particularly the effects of types of
reservoirs, geomechanical properties and conditions,
CO  sensitivity of the formation, and so forth.

Conclusions
In summary, we report herein a multiscale
investigation on dry CO  fracturing for the recovery
of unconventional resources. It was found that as
compared with the normally used water, CO  has
higher leak-off within the natural porosity of the
reservoir rock. This property enables better delivery
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of IPs, resulting in an effective lowering of fracturing
pressure. Moreover, thanks to the more accurate
data collected by in situ AE monitoring, the fracturing
mechanism can be quantitatively determined by
sMTA. It was found that shear cracks were readily
generated during CO  fracturing, which decreased
the barrier for further formation of tensile and mixed
fractures. Such microscopic behavior enabled the
effective formation of more complex fracture
networks on a mesoscale. We further report our
observations in field tests that a 2.5 times higher
stimulated reservoir volume was achieved by CO
fracturing as compared to water fracturing, resulting
in a 4- to 20-fold increase in tight oil production. This
disciplinary-crossing research provides
comprehensive understandings on the mechanism
and behavior of CO  fracturing and thus should shed
meaningful lights on technologies of effective and
greener recovery of unconventional resources, such
as tight oil, shale gas/oil, etc.

Experimental
Procedures
Fracturing of Cylindrical Shale and In Situ
Acoustic Emission Monitoring
Cylindrical samples were obtained by collecting
shale outcrops at Dayou Town; the formation
belongs to the Lower Silurian Longmaxi marine shale
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in southeastern Chongqing, SW China (Figure S1),
Table S1 shows the general properties of the
samples. The collected samples were first processed
into cylindrical form with a diameter of 100 mm and a
height of ca. 200 mm. During the sample collection
and processing, a surface layer of at least 20 cm
thickness was removed to avoid the influence of
weathering. The representativeness of the outcrops
was verified by comparing their mechanical
properties with core samples from the same
formation (Table S1). In the center of the sample, a
hole (12 mm in diameter and ca. 80 mm in depth)
was drilled. A stainless-steel (SS) tube of 6 mm
diameter, with a grooved fitting for O-ring sealing,
was inserted as a simulating well. The void between
the well and the hole was then sealed by epoxy
resin. An as-prepared sample was shown in
Figure S2. During our experiments with the
cylindrical samples, in situ AE monitoring was used
as a direct and effective way to monitor the dynamic
picture of the fracturing process. To this end, up to
eight AE probes were assembled onto the surface of
the samples, as showed in Figure S3. This enables
the collection of the acoustic signals emitted by the
initiation and propagation of fractures. Raw data
were then subjected to an iterative localization
algorithm to obtain dynamic, visualized, and position-
resolved results of the fracturing process. The
assembled sample was then placed onto the tri-axial
chamber base, and an injection fitting was connected
to the simulated well. The assembly showed in
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Figure S3B was then sealed in a hydraulic chamber.
Figure S4 shows the schematic diagram of the
system. Into the hydraulic chamber, aviation
hydraulic oil was pumped. After the temperature was
controlled at 40°C by external heaters, the confining
pressure was increased stepwise, and an additional
load was applied in the axial direction. Fracturing of
the samples was started by injection of either CO
(pre-heated to 40°C) or water into the well bore until
drastic pressure drop was observed, which indicates
either shale breakthrough or seal failure due to
extremely high IPs (note: for CO  fracturing, a pre-
injection stage with lower pressure ramping was
used).

Large-Scale Tri-axial Fracturing
Large shale outcrop samples were collected from
Lower Silurian Longmaxi Formation in Changning
County, Sichuan Province (Figure S12). Table S3
shows the general properties of the samples. After
removing the weathering layer, samples were
processed into cubes of 300 × 300 × 300 mm in size.
At the center of each cube, a hole with a diameter of
20 mm and a depth of 170 mm was drilled parallel to
the bedding planes, and an SS tube (12 mm o.d.)
was inserted as a simulating horizontal well and
sealed similar to the cylindrical samples. A 1/8 inch
tube was then welded and connected to an injection
pump. Figure S13A shows the flowchart of the
fracturing facility. A prepared sample was loaded into
the tri-axial enclosure, and confining pressure was
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gradually applied to levels of roughly one third of the
reservoir conditions. After the loading was stabilized,
water or CO  was injected with a programmed
manner until sample breakthrough was achieved.
The post-fractured samples were then characterized
by 3D scanning via an EinScan S instrument. This
method provides 3D coordinates of the breakthrough
surface with a 0.1 mm resolution, and thus the
digitalized samples can be reconstructed, and the
fracturing-induced breakthrough surface areas can
be calculated.

Field Testing
In the field testing, liquid CO  was first injected via a
pre-cooled mixing unit and pipes (0°C ± 10°C).
During this process, leak tests were performed by
pressure pulse to higher than 30 MPa. After the
fracturing process, a custom-made tri-block co-
polymer bearing a perfluorinated carbon chain,
sulfonate group, and styrene backbone was added
(2 wt %, with <5 wt % acetone as a co-solvent) as a
thickener. Because of the twinning and self-assembly
of the polymer chain in CO , the viscosity of the fluid
can be effectively increased to ca. 2 cP. This
property allowed good transportation of proppants in
the fluid, which is a very important concern for the
practical application of CO  fracturing. After the
operation, the injection well was closed for days
before production was initiated.

ABAQUS Simulation
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A numerical model in ABAQUS simulation was
established by the fluid-solid coupling analysis
module and cohesive element of ABAQUS. The
natural fracture model was generated by Python with
a cluster of conjugate natural cracks of 30° in dip
angle. For the simulation with different fluids,
pumping rates were kept identical while viscosity and
leak-off coefficient were varied (see Supplemental
Information 8 and Table S6 therein for detailed
simulation parameters and source code).
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